public marks

PUBLIC MARKS from ogrisel with tag ai

2008

Conditional Random Fields

(via)
Conditional random fields (CRFs) are a probabilistic framework for labeling and segmenting structured data, such as sequences, trees and lattices. The underlying idea is that of defining a conditional probability distribution over label sequences given a particular observation sequence, rather than a joint distribution over both label and observation sequences. The primary advantage of CRFs over hidden Markov models is their conditional nature, resulting in the relaxation of the independence assumptions required by HMMs in order to ensure tractable inference. Additionally, CRFs avoid the label bias problem, a weakness exhibited by maximum entropy Markov models (MEMMs) and other conditional Markov models based on directed graphical models. CRFs outperform both MEMMs and HMMs on a number of real-world tasks in many fields, including bioinformatics, computational linguistics and speech recognition.

An Empirical Evaluation of Deep Architectures on Problems with Many Factors of Variation [PDF]

(via)
Recently, several learning algorithms relying on models with deep architectures have been proposed. Though they have demonstrated impressive performance, to date, they have only been evaluated on relatively simple problems such as digit recognition in a controlled environment, for which many machine learning algorithms already report reasonable results. Here, we present a series of experiments which indicate that these models show promise in solving harder learning problems that exhibit many factors of variation. These models are compared with well-established algorithms such as Support Vector Machines and single hidden-layer feed-forward neural networks.

YouTube - Visual Perception with Deep Learning

(via)
A long-term goal of Machine Learning research is to solve highly complex "intelligent" tasks, such as visual perception auditory perception, and language understanding. To reach that goal, the ML community must solve two problems: the Deep Learning Problem, and the Partition Function Problem. There is considerable theoretical and empirical evidence that complex tasks, such as invariant object recognition in vision, require "deep" architectures, composed of multiple layers of trainable non-linear modules. The Deep Learning Problem is related to the difficulty of training such deep architectures. Several methods have recently been proposed to train (or pre-train) deep architectures in an unsupervised fashion. Each layer of the deep architecture is composed of an encoder which computes a feature vector from the input, and a decoder which reconstructs the input from the features. A large number of such layers can be stacked and trained sequentially, thereby learning a deep hierarchy of features with increasing levels of abstraction. The training of each layer can be seen as shaping an energy landscape with low valleys around the training samples and high plateaus everywhere else. Forming these high plateaus constitute the so-called Partition Function problem. A particular class of methods for deep energy-based unsupervised learning will be described that solves the Partition Function problem by imposing sparsity constraints on the features. The method can learn multiple levels of sparse and overcomplete representations of data. When applied to natural image patches, the method produces hierarchies of filters similar to those found in the mammalian visual cortex. An application to category-level object recognition with invariance to pose and illumination will be described (with a live demo). Another application to vision-based navigation for off-road mobile robots will be described (with videos). The system autonomously learns to discriminate obstacles from traversable areas at long range.

YouTube - The Next Generation of Neural Networks

(via)
In the 1980's, new learning algorithms for neural networks promised to solve difficult classification tasks, like speech or object recognition, by learning many layers of non-linear features. The results were disappointing for two reasons: There was never enough labeled data to learn millions of complicated features and the learning was much too slow in deep neural networks with many layers of features. These problems can now be overcome by learning one layer of features at a time and by changing the goal of learning. Instead of trying to predict the labels, the learning algorithm tries to create a generative model that produces data which looks just like the unlabeled training data. These new neural networks outperform other machine learning methods when labeled data is scarce but unlabeled data is plentiful. An application to very fast document retrieval will be described.

Don Quixote Time Series Software

(via)
Don Quixote is a new business software that uses artificial intelligence and powerful statistical methodology to achieve high forecasting accuracy. No matter if you forecast market shares, sales, profits, demand for services or material, Don Quixote will make your work faster, easier and more accurate and will improve your understanding of the nature of time series.

2007

ICML 2007 - PRELIMINARY VIDEOS FROM THE SPOT

(via)
The 24th Annual International Conference on Machine Learning is being held in conjunction with the 2007 International Conference on Inductive Logic Programming at Oregon State University in Corvallis, Oregon. As a broad subfield of artificial intelligence, machine learning is concerned with the design and development of algorithms and techniques that allow computers to "learn". At a general level, there are two types of learning: inductive, and deductive.

Elefant - What is Elefant

Elefant (Efficient Learning, Large-scale Inference, and Optimisation Toolkit) is an open source library for machine learning Elefant include modules for many common optimisation problems arising in machine learning and inference. It is designed to be modular and easy to use. Framework provides easy to use python interface, which can be use for quick prototyping and testing inference algorithms.

Artificial Intelligence: A Modern Approach

The leading textbook in Artificial Intelligence. Used in over 1000 universities in 91 countries (over 90% market share). The 85th most cited publication on Citeseer.

Home - voxforge.org

VoxForge was set up to collect transcribed speech for use with Free and Open Source Speech Recognition Engines. We will categorize and make available all submitted audio files under the GPL license, and then 'compile' them into Acoustic Models for use with Open Source Speech Recognition engines such as Sphinx, ISIP, HTK, and Julius.

Internet Archive: Details: Jeff Hawkins, Numenta: "Prospects and Problems of Cortical Theory"

(via)
Jeff Hawkins, Numenta: "Prospects and Problems of Cortical Theory". This is the 10th and final talk given at the Redwood Center for Theoretical Neuroscience

Stevey's Home Page - the Google at Delphi

(via)
Google is building an AI. I've gone and let the cat out of the bag right up front, because I don't want you to hear my thesis halfway through and feel I've been wasting your time. If you aren't interested in hearing why I think Google is in the process of building the world's first large-scale Artificial Intelligence, please stop now, because that's all this essay is about.

2006

EvoGrid - Evolutionary Computation framework for Python in Launchpad

EvoGrid is a componentized framework based on the Zope3 interfaces / adapters system to build Evolutionary Algorithms (aka Genetic Algorithms) by pluging python components together.

Introducing the EvoGrid system

EvoGrid is a component-based python framework to build Evolutionary Computation-based Machine Learning algorithms sometime also known as Genetic Algorithms The EvoGrid design is inspired by the idea of "replicators" introduced by Richard Dawkins in his book The Selfish Gene. EvoGrid's replicators can evolve through both classical undirected darwinian evolution or through "intelligent" lamarckian evolution or by a combination of both. In this respect, EvoGrid can be considered a Memetic Computational framework.